A New Segmentation Algorithm for Prostate Boundary Detection in 2d Ultrasound Images

نویسنده

  • Bernard Chiu
چکیده

ii I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. Abstract Prostate segmentation is a required step in determining the volume of a prostate, which is very important in the diagnosis and the treatment of prostate cancer. In the past, radiologists manually segment the two-dimensional cross-sectional ultrasound images. Typically, it is necessary for them to outline at least a hundred of cross-sectional images in order to get an accurate estimate of the prostate's volume. This approach is very time-consuming. To be more efficient in accomplishing this task, an automated procedure has to be developed. However, because of the quality of the ultrasound image, it is very difficult to develop a computerized method for defining boundary of an object in an ultrasound image. The goal of this thesis is to find an automated segmentation algorithm for detecting the boundary of the prostate in ultrasound images. As the first step in this endeavour, a semi-automatic segmentation method is designed. This method is only semi-automatic because it requires the user to enter four initialization points, which are the data required in defining the initial contour. The discrete dynamic contour (DDC) algorithm is then used to automatically update the contour. The DDC model is made up of a set of connected vertices. When provided with an energy field that describes the features of the ultrasound image, the model automatically adjusts the vertices of the contour to attain a maximum energy. In the proposed algorithm, Mallat's dyadic wavelet transform is used to determine the energy field. Using the dyadic wavelet transform, approximate coefficients and detailed coefficients at different scales can be generated. In particular, the two sets of detailed coefficients represent the gradient of the smoothed ultrasound image. Since the gradient modulus is high at the locations where edge features appear, it is assigned to be the energy field used to drive the DDC model. The ultimate goal of this work is to develop a fully-automatic segmentation algorithm. Since only the initialization stage requires human supervision in the proposed semi-automatic initialization algorithm, the task of developing a fully-automatic segmentation algorithm is reduced to designing a fully-automatic initialization process. Such a process is introduced in this thesis. In this work, the contours …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images

Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Prostate Segmentation and Regions of Interest Detection in Transrectal Ultrasound Images

The early detection of prostate cancer plays a significant role in the success of treatment and outcome. To detect prostate cancer, imaging modalities such as TransRectal UltraSound (TRUS) and Magnetic Resonance Imaging (MRI) are relied on. MRI images are more comprehensible than TRUS images which are corrupted by noise such as speckles and shadowing. However, MRI screening is costly, often una...

متن کامل

Rotationally resliced 3D prostate TRUS segmentation using convex optimization with shape priors.

PURPOSE Efficient and accurate segmentations of 3D end-firing transrectal ultrasound (TRUS) images play an important role in planning of 3D TRUS guided prostate biopsy. However, poor image quality of the input 3D TRUS images, such as strong imaging artifacts and speckles, often makes it a challenging task to extract the prostate boundaries accurately and efficiently. METHODS In this paper, th...

متن کامل

A Parallel Optimized Approach for Prostate Boundary Segmentation from Ultrasound Images

This paper presents an automated multi-step algorithm for segmenting the prostate boundary from ultrasound images. As the acquired ultrasound images are usually affected due to the presence of Speckle and other noise artifacts, the first step is to pre-process these images using Sticks Filtering. Further, in stage two an initial contour is determined from these pre-processed images. Finally, An...

متن کامل

Spectral clustering for TRUS images

BACKGROUND Identifying the location and the volume of the prostate is important for ultrasound-guided prostate brachytherapy. Prostate volume is also important for prostate cancer diagnosis. Manual outlining of the prostate border is able to determine the prostate volume accurately, however, it is time consuming and tedious. Therefore, a number of investigations have been devoted to designing a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003